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It is established on the basis of experimental data that heat transfer in loads of granulated porous catalysts 

and their supports proceeds via intergranule contacts and the gaseous medium that fills pores and 

intergranule space, and by means of radiative heat transfer between granule surfaces. An equation is obtained 

that makes it possible to calculate the effective thermal conductivity of catalysts and their supports not 

investigated experimentally as functions of temperature, granule dimensions, load density, concentration, 

and type of introduced metallic particles in various gaseous media 

Investigations of the thermal conductivity and thermal diffusivity of supports and deposited catalysts have 

shown that the thermal conductivity ;t and thermal diffusivity a of both supports and catalysts increase linearly 

with temperature in vacuum and in various gaseous media. 

Four main processes contribute to the mechanism of heat transfer in loads of the supports and catalysts 

under investigation: 1) heat transfer via the granule contact; 2) heat transfer via a gaseous medium that fills pores 

and space between protruding roughnesses of surfaces in contact; 3) radiative heat transfer between granule 

surfaces; 4) heat transfer by means of convection of the gas in pores and between granules. 

For the samples under investigation the pore dimensions ( -  100 A) and the gaps at granule contacts are 

insignificant, which inhibits initiation of convective gas flows under the action of the temperature gradient. 

Conditions for initiation of convection in porous materials are determined from the critical values of the 
filtration Rayleigh number 11-81 

Racr = Gr Pr Da,  

where Gr, Pr, and Da are the Grashof, Prandtl, and Darcy numbers, respectively. 

According to 11-4 ], convective heat transfer is initiated at Racr 40. In our experiments Racr 4.10 -4, 
which bears witness to the absence of convective heat transfer. 

The increase in the thermal conductivity and thermal diffusivity of the samples with temperature observed 

in our experiments results from an increase in the thermal conductivity of the gas that fills pores and gaps between 

granules of the supports and catalysts, a small increase in lhe intergranule contact area, and an increase in the 
radiative heat transfer. 

Indeed, heat transfer at intergranule junctions proceeds not only via contacts but also via pores, an 

appreciable number of which are situated at the contact. This leads to a decrease in the thermal resistance of the 

contact and, consequently, to an increase in heat transfer via these contacts. 
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According to experimental data, ~. and a of the supports and catalysts under investigation are insignificant 

in vacuum compared to the thermal conductivity and thermal diffusivity in gaseous media, which is indicative of 

insignificant heat transfer via intergranule contacts of the samples. 

Thus, the absence of gas in pores leads to a sharp increase in thermal resistance and correspondingly to 

a decrease in thermal conductivity and thermal diffusivity. 

The increase in the thermal conductivity and thermal diffu.,;ivity of the supports and catalysts under 

investigation in vacuum with temperature observed in our experiments can be explained by an insignificant increase 

in the area of the contact spot between granules and an increase in the fraction of the radiative heat transfer. 

Investigations showed that for the same content of metallic additives the maximum values of thermal 

conductivity and thermal diffusivity were observed for copper-containing catalysts, whereas the minimum values 

were observed for cobalt-containing ones. 

The thermal conductivity of a deposited copper catalyst containing 28.8 Yo metallic additives with granule 

dime,isions of 0 .8-1 .25 mm on an N-1 support is 14.55/o higher than that of a deposited cobalt catalyst containing 

305/o metallic additives with granule dimensions of 0 .8-1 .25 mm on an N-I support in nitrogen at 293 K, when, 

according to [5, 6 ], the thermal conductivity of copper is 4.5 times greater than 2 for cobalt. This demonstrates 

the insignificant contribution of metallic crystals of various materials to the increase in the thermal conductivity 

and thermal diffusivity of the catalysts under investigation. 

According to our experimental data, metallic additives with higher values of thermal conductivity and 

thermal diffusivity contribute more subtantially to the increase in 2 and a of a catalyst load compared to metallic 

additives with lower values of thermal conductivity and thermal diffusivity. 

Thus, with an increase in the concentration of metallic additives the increase in thermal conductivity and 

thermal diffusivity depends on both the change in their volume and the thermophysical properties of the metallic 

additives, especially their thermal conductivity and thermal diffusivity. 

We made a quantitative estimate of the radiative component of the thermal conductivity of the objects under 

investigation at various temperatures and found its correlation with the effective thermal conductivity. 

Transfer  of radiation energy in solid bodies is characterized by the cofficient of radiative thermal 

conductivity .,lr, which in the case of a "gray" medium (the absorption coefficient is independent of the emission 

frequency) is calculated by the Rosseland formula [7 ]: 

2 
16 ~r_ crT 3 (1) 

'lr = 3 

where n is the refractive index; cr is the Stefan-Boltzmann constant;/5 is the spectral attenuation coefficient. 

For real media in the region of partial transparency /5 depends on the temperature and the radiation 

spectrum. 

Polts [8] used formula (1) to calculate the radiative component of the thermal conductivity for a gray 

medium bounded by diffuse surfaces, and proposed the formula 

16 no ~r = ~ ~ -  T3V(ew, r , (2) 

where V(ew, 6) is a function that accounts for the optical thickness of the sample di and the degree of backness ew 

of the bounding surfaces (walls). 

Men' and Sergeev I91 note that the Polts formula yields an error not higher than 10~ for a thin layer 

about 5 mm thick at a fluence density up to 7.5.103 W/(m. K), and the error reaches 20~  with increase in the 

optical thickness of the layer. 

Luikov has shown I101 that if the pore walls are not transparent for thermal radiation, then the radiative 

component of the thermal conductivity can be represented as follows: 

)t r = 4 f a t 6 T  3 , (3) 

235 



where  6 is the size of the panicle ;  f is a coefficient re la ted to the opticogeometric  character is t ics  of the pore model 

and  the calculat ion scheme. According to da ta  of various authors ,  / takes various values: f =  1/3 (Bosworth);  . f ' -  

e m / ( C t - e m )  CArgo a n d  S m i t h ) ;  f = Em ( S c h o t t e ) ;  [ = (6e2m)/ad ( C h u d n o v s k i i ) ;  f = 

0.865[3I'IEm + (l  -l-I)em ]/ [l + (1 - FI)(1 - Em) ] ( N i k i t i n ) ;  f = (1 + 5 " 1 0 - 5 / r ) 0 . 1 6 / ( I  - 1-I) - 115  ( S h o r i n ,  

Zarudnyi ,  and  Se rebryany i ) ;  f =  EmF (Leob),  where em is the degree of blackness of the mater ia l ;  FI is the porosity;  

F is a geometr ic  factor. 

Luikov notes that  none of the models  can be favored. 

Calculat ions  showed that for one and the same load of the objects  under  investigation the sca t te r  in the 

pa ramete r  f calculated using different  equations is as large as 703/0. 

Appl icat ion of the above formulas  in pract ical  calculat ions of the radia t ive  component  of the thermal  

conductivi ty seems to be impossible since each of the formulas  contains a set of quanti t ies  that  should be de t e rmined  

exper imenta l ly .  

Therefore ,  in o rde r  to de te rmine  the radiat ive component  of the thermal  conduct ivi ty  of the objects  under  

investigation we proceeded from the assumption that  the thermal  conductivi ty in vacuum ~ef can be rep resen ted  as 

the sum of the thermal  conductivi ty via granule  contacts  2 c and the thermal  conduct ivi ty due to rad ia t ion  ,a.r: 

v (4) 
2el = 3"c + J'r " 

The  above formulas  that  determine,,1 r contain the factor F a T  "3, which de te rmines  the increase  in the  thermal  

conductivity with temperature .  Therefore  Eq. (4) can be represented  in the form 

v 

2e f = ,,1. c + F a T  3 , (5) 

where 3. r = F a T  .3 is the thermal  conductivity due to radia t ion  (here F = 4f6) ; ,,l c is the contact  thermal  conduct ivi ty ,  

which in a first approximat ion is t empera tu re - independen t ,  since the area  of the contact  spot of a g ranule  varies 

insignif icant ly with temperature .  

Let us write Eq. (5) for the tempera ture  TI and the current  t empera tu re  value T: 

2efl  = "~c + F~ , '~'~f2 = )'c + FAT3" (6)  

whence we have for the coefficient F: 

v v 

F - ) 'ell  - J'ef2 (7)  

o ( r '  - 

Then we obtain the following expression for.at: 

v v 

2el2 (T )  - -  "]'efl ( T I )  T . 3  (8) 

By subst i tut ing the value (7) into the first equation of (6) we find 

v v 

v ~ef2 (T )  - ~efl ( T I )  3 
2 c = 2el  I -- T I . (9) 

Knowing .a c, one can calculate the radiat ive component  of the effective value of the thermal  conduct ivi ty  of 

the ca ta lys is  and  supports  under  investigation at any temperature  using formula (4). 

Calculat ions with formula (4) showed that for the samples under  investigation the value of the radiat ive 

component  of the thermal conductivity at a temperature  of 293 K equals 5Yo of the effective thermal conduct ivi ty  

with high accuracy,  i.e., ,,l c = 0.05.,t.293. Therefore ,  for the contact thermal conductivity wc have 
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Fig. 1. Radiation component  of the thermal conductivity of copper catalysts 

deposited on an N-1 support with granule dimensions of 0 . 8 - 1 . 2 5  mm as a 

function of temperature: 1) N- I ;  2) N-1 + 4.5% met.; 3) N-1 + 12~o met.; 4) 

N-I  + 23.4% met.; 5) N- I  + 28.8% met. 

�9 293 .293  293 ( 1 0 )  
2 c = A e i  -- 0 . 0 5 A e f  = 0 . 9 5 ~ e f  

Thus,  assuming that ,;t c is virtually temperature- independent ,  one can estimate from the formula (4) the 

fraction of the radiative component  at any  temperature using the value of ~-ef. 

Calculations showed that for the objects under  investigation the value of ,,lr increases in vacuum with 

temperature,  and at a temperature of 1016.8 K the value of the radiative component for a catalyst containing 31.6 

wt.% iridium on an N-1 support equals 38% of the effective thermal conductivity. 

From Eels. (4) and (10) we obtain 

V 0 3  ll, 

Calculations with Eq. (11) showed that 2r for the catalysts and supports under  investigation depends on 

temperature,  thermophysical  properties of the catalysts and supports, load density,  concentration, and individual 

properties of introduced metallic particles in the catalysts. 

The radiative component  of the thermal conductivity of the objects under investigation increases linearly 

with temperature (Fig. 1). 

Indeed,  if we take into account in (8) the linear dependence of the effective thermal conductivity on T and 

set 2el = CT 1, 2e l  = CT, we obtain 

c ( T -  T~) "r 3 ' 

2 r - T3 _ T~I 

whence it follows that ,,l r - T. We should emphasize that this results from the decrease in the degree of blackness 

and the increase in the at tenuation coefficient (see (I))  with increase in temperature [I 1, 12 I. 

It is evident from Fig. 1 that the radiative component of the thermal conductivity of the catalysts increases 

with the weight concentration of the metallic particles. The maximum increase in the radiative component of the 

thermal conductivity with temperature is observed for catalysts containing metallic particles with a high value of 

thermal conductivity. Indeed,  the greatest increase in the radiative component of the thermal conductivity with 

temperature is observed for copper-containing catalysts. 

In order  to establish the dependence of the radiative component of the thermal conductivity of the objects 

under  investigation on temperature,  granule dimensions, load density, concentration, and individual properties of 

the introduced metallic particles we processcd the data in the form of the depcndencc 
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Fig. 2. Dependence J.r/2~ = f ( T / T I )  for the catalysts under investigation and 

their supports: 1) N-I  (0.8-1.25);  2) N-I  (2 -3 ) ;  3) N-I  ( 3 - 4 ) ;  4) N-2 

(0.8-1.25);  5) N-2 (2 -3 ) ;  6) N-2 (3 -4 ) ;  7) N-I  +31.7% lr (0.8-1.25);  8) 

N-I + 31 .2~  Ir ( 2 -3 ) ;  9) N-I  + 3 0 ~  Ir; 10) N-3 (1 -2 ) ;  11) N-3 (2 -3 ) ;  

12) N-3 (3 -4 ) ;  13) N-1 + 2 0 ~  lr (2 -3 ) ;  14) N-I  + 6 .5~  Co (0.8-1.25);  

15) N-I  + 15% Co (0.8-1.25);  16) N-1 + 25% Co (0.8-1.25);  17) N-I  + 

10% Ru (0.8-1.25);  18) N-3 + 20% Ir ( I -  2); 19) N-I  + 30% Ir ( 1 - 2 ) ;  

20) N-3 + 10% Ir (1 -2 )  ram. 

~"r f ' (12) 

where /~r and 2'r are the radiative components of the thermal conductivity at temperatures 7" and T~ = 673 K, 

respectively. 

Feasibility of the dependence (12) for the objects under investigation is shown in Fig. 2, according to which 

all experimental points fit a common straight line well. This straight line is described by the equation 

2 r = ( I . 5 T / T  1 - 0 . 5 )  Jl' r. (13) 

An analysis of ;t'r for the objects under investigation showed that it increases linearly with the granule 

dimensions. 

In processing experimental data for the dependence of .;1.' r on the granule dimensions we obtained an 

equation of the form 

)t~ = ( O . 0 5 5 d / d  I + 0.945) 2; ,  (14) 

where ;t' r' is the radiative component of the thermal conductivity of the objects under investigation for mean granule 

dimensions d l =  1 mm at a temperature T1 = 673 K. 

An analysis of J.r' for the supports under investigation showed that it is a function of the load density p: 

,:t;= (83.9.10 - 3 - 6 1 . 3 . 1 0 - 6 p ) ,  W / ( m . K ) .  (15) 

From Eqs. (13)-(15),  for calculation of the radiative component of the thermal conductivity of the 

investigated supports with various granule dimensions as a function of temperature T and load density p we obtain 

2 r = ( I . 5 T / T  l - 0.5) ( O . 0 5 5 d / d  I + 0.945) (83.9-10 -3 - 61 .3 .10-6p) ,  W / ( m , K ) ,  (16) 

For the catalysts under investigation A'r' increases linearly with the load density p and it also increases with 

the thermal conductivity of the metallic fillers. 
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Fig. 3. Dependence of 2 r on the thera'nal conductivity of introduced metallic 

catalysts. 

In processing experimental data for the dependence of ;t' r' on the load density of the investigated catalysts 
we obtained the equation 

)t r = ( 0 . 7 1 p / p l  + 0.29) 2~, (17) 

where ~-r is the value of ~-'r' for a value of the catalyst load density Pl = 1300 kg/m 3. 

An analysis of,l. r for the catalysts under investigation showed that it is a function of the thermal conductivity 
of the introduced metallic particles (Fig. 3). 

The straight line in Fig. 3 is described by the equation 

2~ = 2.17.10-52., + 22.53.10 -3 , W / ( m . K ) .  (18) 

From Eqs. (17) and (18) we obtain 

)t~ = ( 0 . 7 1 p / p l  + 0.29) (2.17.10-5.~m + 22.53-10 -3 ) ,  W / ( m . K ) .  (19) 

Substituting Eq. (19) into (14); we obtain the following expression for calculation of J.r': 

;(r = (O .055d /d t  + 0.945) ( O . 7 1 p / p l  + 0.29) (2.11-10-52rn + 22.53-10 -3) , W / ( m . K ) .  (20) 

From Eqs. (13) and (20), for calculation of the radiative component of the thermal conductivity of the 
catalysts under investigation we obtain 

;t r = ( I . S T / T  l - 0.5) ( O . 0 5 5 d / d  I + 0.945) • 

x ( 0 . 7 1 p / p l  + 0.29) (2.17"10-5).m + 22.53' 10 -3 ) ,  W / ( m . K ) .  (21) 

Equation (21) establishes the dependence of the radiative component of the thermal conductivity of the 

catalysts under investigation on temperature T, granule dimensions d, load density p, and thermal conductivity of 
the introduced metallic particles J-re. 

Calculations of the radiative component of the thermal conductivity of the objects under investigation with 

relationships (16) and (21) showed that they describe the experimental data with an accuracy up to 8 ~ .  

With Eqs. (16) and (21) one can calculate the radiative component of the thermal conductivity for catalysts 

not studied experimentally that contain various metals with various weight concentrations and for their supports 
with granule various dimensions and shapes within the temperature interval 293-1073 K. 

An analysis of the experimental data showed that the contact thermal conductivity ~l c of the objects under 
investigation depends on granule dimensions, concentration, and individual properties of the introduced metallic 

particles. 
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In processing and generalization of the experimental data we obtained the following equations for 

calculation of the contact thermal conductivity of the supports and catalysts under investigation: 

for the supports 

a c = (0.055 d / d  I + 0.945) (0.19 - 14 .10-sp) ,  W / ( m - K ) ,  (22) 

for the catalysts 

a c = ( 0 . 0 5 5  d / d  I + 0.945) ( 1 . 2 5 p / p l  - 0.245) (6.15.10-52m + 5.25.10 -2 )  , W / ( m . K ) .  (22') 

Equations (22) and (22') establish the dependence of the contact thermal conductivity of loads of the 

catalysts and their supports on granule dimensions d, load density p, and thermal conductivity of the introduced 

metallic particles am. 

A check of Eqs. (22) and (22') showed that they describe the contact thermal conductivity of the catalysts 

under investigation and their supports with the accuracy of 5%. 

With Eqs. (22) and (22') one can calculate the contact thermal conductivity of catalysts and supports not 

studied experimentally with various values of porosity as a function of granule dimensions, load density, and 

thermal conductivity of the introduced metallic particles. 

The effective thermal conductivity*lef of loads of catalysts and supports in gaseous media can be represented 

as follows: 

a e f = a  c + 2  r+~ . g ,  (23) 

where 2 c is thermal conductivity via granule contacts; ar is the radiative thermal conductivity; ag is the thermal 

conductivity by means of the gaseous medium. 

Expression (23) with account for Jlef = a c + ar can be written in the following form: 

v (24) 
aef =aef  + a g .  

From Eq. (24) we obtain an expression for the component of the thermal conductivity by means of the 
gaseous medium at various temperatures: 

v 

2g = ~ef - 2el" (25) 

Calculations with Eq. (25) showed that the contribution of the gaseous medium to the effective thermal 

conductivity of the objects under investigation depends on temperature, properties of the filling gas, and individual 
properties of the catalysts and their supports. 

According to the results obtained, 2g increases linearly with temperature, and with increase in the thermal 

conductivity of the filling gas its contribution to the effective thermal conductivity of loads of the catalysts and 

supports increases. Hydrogen has the highest value of thermal conductivity, and therefore it makes the greatest 
contribution to the effective thermal conductivity of the catalysts and supports. 

The contribution of the gaseous medium to the effective thermal conductivity of loads of the objects under 

investigation also depends on the type of supports and catalysts. The greatest contribution of the gaseous medium 

to the effective thermal conductivity is observed for the N-3-type support, whereas the smallest one is observed for 

the N-1 support. The greater  the thermal conductivity of the introduced metallic particles, the greater  the 

contribution made by the gaseous medium to the effective thermal conductivity of the catalyst. Indeed, the greatest 

contribution of the gaseous medium to the effective thermal conductivity is observed for catalysts containing copper 
particles. 

To establish the dependence of 2g on the temperature 7" and the thermal conductivity of the filling gas the 
data were processed in the form of the following funclional dcpcndence: 
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:1 ~ = / (26) 

where ,t'g is the contribution of the thermal conductivity of the filling gas to the effective thermal conductivity at a 

temperature TI = 673 K. The dependence (26) for the catalysts and supports under investigation, as shown by our 
investigations, is represented well by a common straight line that is described by the equation 

/lg = (0.58 + 0 . 4 2 T / T z ) 2 g .  (27) 

Using relationship (27), one can calculate 2g as a function of temperature, provided ),g is known. 

In processing the experimental data we obtained the following equation for calculation of ,l'g: 

,l'g = (31.5.10-4;tGT- + 0.37)(0.68 - 34 .10-5p) ,  W / ( m - K ) .  (28) 

From Eqs. (27) and (28) we obtain the following expression for calculation of ,lg of the supports under 
investigation: 

;tg = (0.58 + 0 . 4 2 T / T t )  (31.5.10-43.GTl/2tGT 1 + 0.37) X (0.68 -- 34" 10-5,o), W / ( m - K ) .  (29) 

Equation (29) determines the dependence of Jig of the supports under investigation on temperature T, thermal 

conductivity of the filling gas ~-GTI, and load density p. 

In processing theexperimental data we obtained the following equations for calculation of the contribution 

of thethermal conductivity of the filling gas to the effective thermal conductivity of the catalysts under investigation 

,lg = (0.58 + 0 . 4 2 T / T I )  (0 .632Gr /~ t 'Gr  ~ + 0.37) X 

X (0 .68p /p1  + 0.32) (1.74" 10-42m + 0.35), W / ( m . K ) ,  (30) 

)tg = )t G [0.55 ( T / T 1 )  2 - 1 . 6 2 T / T  1 + 0.26 1 X 

X (0 .76p /p1  + 0.24) (8.4" 10 -2 ~/3. m + 2.715), W / ( m . K ) .  (3l) 

Equations (30) and (31) determine the dependence of the contribution of thelhermal conductivity of the filling gas 

to the effective thermal conduclivity of the catalysts under investigation ~lg on temperature T, thermal conductivity 

of the filling gas 3. G, load density p, and thermal conductivity of the metallic particles introduced into the catalysts 
2m. 

A check of Eqs. (29), (30), and (31) for the supports and catalysts under investigation showed that they 

approximate the experimental data with an error up to 8 %. 

With Eqs. (29), (30), and (31) one can calculate the contribution of the thermal conductivity of the filling 
gas to the effective thermal conductivity of supports and catalysts not studied previously that contain various weight 

concentrations of theintroduced metallic particles and have various porosities within the temperature interval 
293-  1073 K. 

From relationship (23), in view of Eqs. (16), (21), (22), (23), (29)-(31) we obtain the following equations 

for calculation of the effective thermal conductivity of loads of catalysts and supports: 

for catalysts 

2t. f = (0.055 d / d  I + 0.945) [ l . 2 5 p / p l  - 0.245) (6.15-10-52m + 

+ 5.26-10 -2 ) + ( I . 5 5 T / T  I - 0.5) ( 0 . 7 1 p / p l  + 0.29) (2.17-10-53.m + 

+ 22.53 10-3) t + (0.$8 + O . 4 2 T / T I ) ( 0 . 6 3 A O T i / 2 G r l  + 0.37)(0.68p/pl  + 
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+ 0.32) (1.74.10-4,l.m + 0.35), W / ( m . K ) ,  (32) 

for supports 

)tel = ( 0 . 0 5 5  d / d  I + 0.945) [ ( P / P l  - 0.245) (6.15" 10-52m + 

+ 5.26" 10 -2) + ( I . 5 5 T / T  1 - 0 .5)  ( 0 . 7 1 p / p ~  + 0.29) (2.17" 10-5,tin + 

+ 22.53" 10 -3) ] + 2 G [0.55 ( T / T I )  2 - 1 . 6 2 T / T  l + 0.26 I • 

• ( 0 . 7 6 p / p 1  + 0.24) (8.4' 10 -2 vr~,m + 2.715), W/(m.K)  ; (33) 

)'el = (0 .055  d / d  I + 0.945) [(0.189 - 14.10-5/9) + 

+ ( I . 5 T / T  l - 0 .5)  (83.9-10 -3 - 61.3-10-6,o)1 + (0.58 + 0 . 4 2 T / T I )  • 

x (0.62dGrl/gGr I + 0.37) (0.68 - 34 .10-Sp) ,  W / ( m . K ) .  (34) 

Equations (32)-(34) determine the dependence of the effective thermal conductivity of the load of catalysts 

and supports on temperature T, granule dimensions d, load density p, thermal conductivity of the introduced 

metallic particles Am, and thermal conductivity of the filling gas JIG. 

A check of Eqs. (32)-(34) showed that they describe the effective thermal conductivity of loads of catalysts 

and supports with an error up to 8%. 

With Eqs. (32)-(34) one can calculate the effective thermal conductivity of catalysts and supports not 

studied experimentally as a function of temperature, granule dimensions, load density p, and concentration and 
type of introduced metallic particles in various gaseous media. 
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