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EFFECTIVE THERMAL CONDUCTIVITY AND
THERMAL DIFFUSIVITY OF CATALYSTS AND THEIR
SUPPORTS AS FUNCTIONS OF TEMPERATURE IN
VARIOUS GASEOUS MEDIA AND IN VACUUM.

III. RADIATIVE COMPONENT OF THE THERMAL
CONDUCTIVITY, CONTACT THERMAL
CONDUCTIVITY, AND CONTRIBUTION OF A
GASEOUS MEDIUM TO THE EFFECTIVE THERMAL
CONDUCTIVITY OF GRANULATED POROUS
CATALYSTS AND THEIR SUPPORTS

Kh. Madzhidov UDC 536.21

It is established on the basis of experimental data that heat transfer in loads of granulated porous catalysts
and their supports proceeds via intergranule contacts and the gaseous medium that fills pores and
intergranule space, and by means of radiative heat transfer between granule surfaces. An equation is obtained
that makes it possible to calculate the effective thermal conductivity of catalysts and their supports not
investigated experimentally as functions of temperature, granule dimensions, load density, concentration,
and type of introduced metallic particles in various gaseous media.

Investigations of the thermal conductivity and thermal diffusivity of supports and deposited catalysts have
shown that the thermal conductivity A and thermal diffusivity a of both supports and catalysts increase linearly
with temperature in vacuum and in various gaseous media.

Four main processes contribute to the mechanism of heat transfer in loads of the supports and catalysts
under investigation: 1) heat transfer via the granule contact; 2) heat transfer via a gaseous medium that fills pores
and space between protruding roughnesses of surfaces in contact; 3) radiative heat transfer between granule
surfaces; 4) heat transfer by means of convection of the gas in pores and between granules.

For the samples under investigation the pore dimensions (~ 100 R) and the gaps at granule contacts are
insignificant, which inhibits initiation of convective gas flows under the action of the temperature gradient.

Conditions for initiation of convection in porous materials are determined from the critical values of the
filtration Rayleigh number [1-8 ]

Ra,, = Gr PrDa,

where Gr, Pr, and Da are the Grashof, Prandtl, and Darcy numbers, respectively.

According to [1-4], convective heat transfer is initiated at Rag, = 40. In our experiments Rag, = 4- 1074,
which bears witness to the absence of convective heat transfer.

The increase in the thermal conductivity and thermal diffusivity of the samples with temperature observed
in our experiments results from an increase in the thermal conductivity of the gas that fills pores and gaps between
granules of the supports and catalysts, a small increase in the intergranule contact area, and an increase in the
radiative heat transfer.

Indced, heat transfer at intergranule junctions proceeds not only via contacts but also via pores, an
appreciable number of which are situated at the contact. This leads to a decrease in the thermal resistance of the
contact and, conscquently, to an increase in heat transfer via these contacts.
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According to experimental data, A and a of the supports and catalysts under investigation are insignificant
in vacuum compared to the thermal conductivity and thermal diffusivity in gaseous media, which is indicative of
insignificant heat transfer via intergranule contacts of the samples.

Thus, the absence of gas in pores leads to a sharp increase in thermal resistance and correspondingly to
a decrease in thermal conductivity and thermal diffusivity.

The increase in the thermal conductivity and thermal diffusivity of the supports and catalysts under
investigation in vacuum with temperature observed in our experiments can be explained by an insignificant increase
in the area of the contact spot between granules and an increase in the fraction of the radiative heat transfer.

Investigations showed that for the same content of metallic additives the maximum values of thermal
conductivity and thermal diffusivity were observed for copper-containing catalysts, whereas the minimum values
were observed for cobalt-containing ones.

The thermal conductivity of a deposited copper catalyst containing 28.8 % metallic additives with granule
dimeasions of 0.8—1.25 mm on an N-1 support is 14.5% higher than that of a deposited cobalt catalyst containing
309 metallic additives with granule dimensions of 0.8—1.25 mm on an N-1 support in nitrogen at 293 K, when,
according to [, 6], the thermal conductivity of copper is 4.5 times greater than A for cobalt. This demonstrates
the insignificant contribution of metallic crystals of various materials to the increase in the thermal conductivity
and thermal diffusivity of the catalysts under investigation.

According to our experimental data, metallic additives with higher values of thermal conductivity and
thermal diffusivity contribute more subtantially to the increase in 4 and a of a catalvst load compared to metallic
additives with lower values of thermal conductivity and thermal diffusivity.

Thus, with an increase in the concentration of metallic additives the increase in thermal conductivity and
thermal diffusivity depends on both the change in their volume and the thermophysical properties of the metallic
additives, especially their thermal conductivity and thermal diffusivity.

We made a quantitative estimate of the radiative component of the thermal conductivity of the objects under
investigation at various temperatures and found its correlation with the effective thermal conductivity.

Transfer of radiation energy in solid bodies is characterized by the cofficient of radiative thermal
conductivity 4;, which in the case of a "gray” medium (the absorption coefficient is independent of the emission
frequency) is calculated by the Rosseland formula [7]:

_ 16 n2 1
lr——S—B‘UTa, ()

where n is the refractive index; o is the Stefan-Boltzmann constant; § is the spectral attenuation coefficient.

For real media in the region of partial transparency 8 depends on the temperature and the radiation
spectrum.

Polts [8] used formula (1) to calculate the radiative component of the thermal conductivity for a gray
medium bounded by diffuse surfaces, and proposed the formula

A= %6 7 TV (e, 9) 2)

where V(e,, ) is a function that accounts for the optical thickness of the sample & and the degree of backness &y,
of the bounding surfaces (walls).

Men’ and Sergeev [9] note that the Polts formula yields an error not higher than 10% for a thin layer
about § mm thick at a fluence density up to 7.5 103 W/ (m-K), and the error reaches 209% with increase in the
optical thickness of the layer.

Luikov has shown [10] that if the pore walls are not transparent for thermal radiation, then the radiative
component of the thermal conductivity can be represented as follows:

= 40T 3)
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where d is the size of the particle; f is a coefficient related to the opticogeometric characteristics of the pore model
and the calculation scheme. According to data of various authors, f takes various values: f = 1/3 (Bosworth); f =
em/ (@ — &n) (Argo and Smith); f = e (Schotte); f = (65,2,,)/ad (Chudnovskii); f =
0.865[3Meg + (1—-Meg 1/ (1 + (1 = (1 = em) ] (Nikitin); / = (1 +5-1075/10.16/(1 — M)~""'> (Shorin,
Zarudnyi, and Serebryanyi); f= eI’ (Leob), where eq, is the degree of blackness of the material; IT is the porosity;
" is a geometric factor.

Luikov notes that none of the models can be favored.

Calculations showed that for one and the same load of the objects under investigation the scatter in the
parameter f calculated using different equations is as large as 70%,.

Application of the above formulas in practical calculations of the radiative component of the thermal
conductivity seems to be impossible since each of the formulas contains a set of quantities that should be determined
experimentally.

Therefore, in order to determine the radiative component of the thermal conductivity of the objects under
investigation we proceeded from the assumption that the thermal conductivity in vacuum Ag can be represented as
the sum of the thermal conductivity via granule contacts 4. and the thermal conductivity due to radiation 4,:

A=A, +A,. )

The above formulas that determine A, contain the factor FoT? , which determines the increase in the thermal
conductivity with temperature. Therefore Eq. (4) can be represented in the form

=2+ FoT”, &)

where 4, = FoT? is the thermal conductivity due to radiation (here F = 4f3); A, is the contact thermal conductivity,
which in a first approximation is temperature-independent, since the area of the contact spot of a granule varies
insignificantly with temperature.

Let us write Eq. (5) for the temperature 7y and the current temperature value T:

A;“ =A + FoT> , 1;” =4, + FaTj' 6)

whence we have for the coefficient F:

v v

Fe At = Aer2 @
o (T - T)
Then we obtain the following expression for 4,
v v

1= Aer2 (T) = Agqy (T) . (8)

r 7;9 _ ﬁ

By substituting the value (7) into the first equation of (6) we find
v A (D) = A (T

A =AY - er2 () = Aert (T1) 3 9)

==

Knowing A., one can calculate the radiative component of the effective value of the thermal conductivity of
the catalysts and supports under investigation at any temperature using formula (4).

Calculations with formula (4) showed that for the samples under investigation the value of the radiative
component of the thermal conductivity at a temperature of 293 K cquals 5% of the cffective thermal conductivity

with high accuracy, i.c., 4, = 0405,(3?3. Therefore, for the contact thermal conductivity we have
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Fig. 1. Radiation component of the thermal conductivity of copper catalysts
deposited on an N-1 support with granule dimensions of 0.8—1.25 mm as a
function of temperature: 1) N-1; 2) N-1 + 4.5% met.; 3) N-1 + 129 met.; 4)
N-1 +23.4% met.; 5) N-1 + 28.8%, met.
A =52 - 005227 = 0925 (10

Thus, assuming that A. is virtually temperature-independent, one can estimate from the formula (4) the
fraction of the radiative component at any temperature using the value of dgf.

Calculations showed that for the objects under investigation the value of A, increases in vacuum with
temperature, and at a temperature of 1016.8 K the value of the radiative component for a catalyst containing 31.6
wt. % iridium on an N-1 support equals 389, of the effective thermal conductivity.

From Egs. (4) and (10) we obtain

A, =A% - 095127 (b

Calculations with Eq. (11) showed that A, for the catalysts and supports under investigation depends on
temperature, thermophysical properties of the catalysts and supports, load density, concentration, and individual
properties of introduced metallic particles in the catalysts.

The radiative component of the thermal conductivity of the objects under investigation increases linearly
with temperature (Fig. 1).

Indeed, if we take into account in (8) the linear dependence of the effective thermal conductivity on T and
set dgf = CTy, dof = CT, we obtain

_Cr-1)
r TB_’]'? ’

whence it follows that A, ~T. We should emphasize that this results from the decrease in the degree of blackness
and the increase in the attenuation coefficient (see (1)) with increase in temperature [11, 12].

A

It is evident from Fig. | that the radiative component of the thermal conductivity of the catalysts increases
with the weight concentration of the metallic particles. The maximum increase in the radiative component of the
thermal conductivity with temperature is observed for catalysts containing metallic particies with a high value of
thermal conductivity. Indeed, the greatest increase in the radiative component of the thermal conductivity with
temperature is observed for copper-containing catalysts.

In order to cstablish the dependence of the radiative component of the thermal conductivity of the objects
under investigation on temperature, granule dimensions, load density, concentration, and individual properties of
the introduced metallic particles we processed the data in the form of the dependence
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Fig. 2. Dependence A,/A; = f(T/Ty) for the catalysts under investigation and
their supports: 1) N-1 (0.8—1.25); 2) N-1 (2-3); 3) N-1 (3—4); 49 N-2
(0.8—1.25); 5) N-2(2-3); 6) N-2 (3—4); ) N-1 +31.7% Ir (0.8—~1.25); 8
N-1+31.2% Ir (2-3); 9 N-1+30% Ir; 100 N-3 (1-2); 1) N-3 (2—-3);
12) N-3 (3—4); 13) N-1 +20% Ir (2-3); 14) N-1 + 6.5% Co (0.8-1.25);
15) N-1 +15% Co (0.8—1.25); 16) N-1 + 25% Co (0.8—1.25); 17> N-1 +
10% Ru (0.8—-1.25); 18) N-3+20% Ir (1- 2); 19 N-1 +309% Ir (1-2);

20) N-3+109% Ir (1-2) mm.
A T
‘,E =fl—], (12)
A T,

where A, and X; are the radiative components of the thermal conductivity at temperatures T and T} = 673 K,
respectively.

Feasibility of the dependence (12) for the objects under investigation is shown in Fig. 2, according to which
all experimental points fit a common straight line well. This straight line is described by the equation

.= (LST/T, - 0.5) 4. (13

An analysis of A'r for the objects under investigation showed that it increases linearly with the granule
dimensions.

In processing experimental data for the dependence of ,1; on the granule dimensions we obtained an
cquation of the form

A, = (0.055d/d, + 0.945) A", (14

where l;' is the radiative component of the thermal conductivity of the objects under investigation for mean granule
dimensions J; = | mm at a temperature 7y = 673 K.

An analysis of ,1',' for the supports under investigation showed that it is a function of the load density p:

3

A =(839-10 7 - 61.3-10%), W/(mK). (15)

From Egs. (13)-(15), for calculation of the radiative component of the thermal conductivity of the
investigated supports with various granule dimensions as a function of temperature T and load density p we obtain

3

A, = (1.ST/T, = 0.5) (0.055d/d, + 0.945) (83.9-10 > = 61.3-10 %), W/(m-K). (16)

For the catalysts under investigation A‘,V increases lincarly with the load density p and it also increasces with
the thermal conductivity of the metallic fillers.
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Fig. 3. Dependence of 4; on the thermal conductivity of introduced metallic

catalysts.

In processing experimental data for the dependence of A',' on the load density of the investigated catalysts
we obtained the equation

A= (0.71p/py + 0.29) A, an

where 4] is the value of l,'r' for a value of the catalyst load density p; = 1300 kg/m3.

An analysis of 4; for the catalysts under investigation showed that it is a function of the thermal conductivity
of the introduced metallic particles (Fig. 3).

The straight line in Fig. 3 is described by the equation

. -5 -3
T =217-107A, + 22531077, W/(m-K). (18)

From Egs. (17) and (18) we obtain

1= (0.71p/p, + 0.29) (217-10 °4_ + 22.53-107%), W/(m-K). (19)
Substituting Eq. (19) into (14); we obtain the following expression for calculation of ,l'r':

A, = (0.0554/d, + 0.945) (0.71p/p, + 0.29) (2.17-10 A + 22.53-107%), W/(m-K). (20)

From Eqs. (13) and (20), for calculation of the radiative component of the thermal conductivity of the
catalysts under investigation we obtain

A, = (LST/T, — 0.5) (0.055d/d, + 0.945) x

x (0.71p/p, +0.29) (2.17-10 A + 22.53-10 %), W/(m-K). (1)

Equation (21) establishes the dependence of the radiative component of the thermal conductivity of the
catalysts under investigation on temperature T, granule dimensions d, load density p, and thermal conductivity of
the introduced metallic particles A,.

Calculations of the radiative component of the thermal conductivity of the objects under investigation with
relationships (16) and (21) showed that they describe the experimental data with an accuracy up to 8%.

With Egs. (16) and (21) one can calculate the radiative component of the thermal conductivity for catalysts
not studiced experimentally that contain various metals with various wecight concentrations and for their supports
with granule various dimensions and shapes within the temperature interval 293—1073 K.

An analysis of the experimental data showed that the contact thermal conductivity A¢ of the objects under
investigation depends on granule dimensions, concentration, and individual propertics of the introduced metallic
particles.
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In processing and generalization of the experimental data we obtained the following equations for
calculation of the contact thermal conductivity of the supports and catalysts under investigation:
for the supports

3. = (0.055 d/d, + 0.945) (0.19 — 14-10 °0), W/(m-K), (22)

for the catalysts

A, = (0.055d/d, + 0.945) (1.25p/p, — 0.245) (6.15- 10‘5/1m + 5.25- 10‘2) , W/(m-K). (229

Equations (22) and (22') establish the dependence of the contact thermal conductivity of loads of the
catalysts and their supports on granule dimensions d, load density p, and thermal conductivity of the introduced
metallic particles Ap.

A check of Egs. (22) and (22') showed that they describe the contact thermal conductivity of the catalysts
under investigation and their supports with the accuracy of 5%.

With Eqgs. (22) and (22') one can calculate the contact thermal conductivity of catalysts and supports not
studied experimentally with various values of porosity as a function of granule dimensions, load density, and
thermal conductivity of the introduced metallic particles.

The effective thermal conductivity Ad¢¢ of loads of catalysts and supports in gaseous media can be represented
as follows:

Rop =Ac + A+ A, 23)

where A. is thermal conductivity via granule contacts; 4, is the radiative thermal conductivity; Ag is the thermal
conductivity by means of the gaseous medium.
Expression (23) with account for 4y = A, + A, can be written in the following form:

Ao = ALy + 2. 24

From Eq. (24) we obtain an expression for the component of the thermal conductivity by means of the
gaseous medium at various temperatures:

)‘g = }‘ef - '{;f . (25)

Calculations with Eq. (25) showed that the contribution of the gaseous medium to the effective thermal
conductivity of the objects under investigation depends on temperature, properties of the filling gas, and individual
properties of the catalysts and their supports.

According to the results obtained, 4, increases linearly with temperature, and with increase in the thermal
conductivity of the filling gas its contribution to the effective thermal conductivity of loads of the catalysts and
supports increases. Hydrogen has the highest value of thermal conductivity, and therefore it makes the greatest
contribution to the effective thermal conductivity of the catalysts and supports.

The contribution of the gaseous medium to the effective thermal conductivity of loads of the objects under
investigation also depends on the type of supports and catalysts. The greatest contribution of the gaseous medium
to the effective thermal conductivity is observed for the N-3-type support, whereas the smallest one is observed for
the N-1 support. The greater the thermal conductivity of the introduced metallic particles, the greater the
contribution made by the gascous medium to the effective thermal conductivity of the catalyst. Indeed, the greatest
contribution of the gaseous medium to the effective thermal conductivity is observed for catalysts containing copper
particles.

To establish the dependence of A5 on the temperature 7 and the thermal conductivity of the filling gas the
data were processed in the form of the following functional dependence:
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Ao (T (26)
AS

T,

where A'g is the contribution of the thermal conductivity of the filling gas to the effective thermal conductivity at a
temperature 7| = 673 K. The dependence (26) for the catalysts and supports under investigation, as shown by our
investigations, is represented well by a common straight line that is described by the equation

Ay = (0.58 + 0.42T/T ) A, 27

Using relationship (27), one can calculate 4; as a function of temperature, provided /l'g is known.
In processing the experimental data we obtained the following equation for calculation of A

Ag = (3L.5: 10—4107‘ +0.37) (0.68 — 34-10 %), W/(m-K). (28)

From Egs. (27) and (28) we obtain the following expression for calculation of A4 of the supports under
investigation:

Ag = (0.58 + 0.42T/T)) (31.5 10"‘AGTl /A’Grl +0.37) x (0.68 — 34-10 °p), W/(m-K). (29)

Equation (29) determines the dependence of A; of the supports under investigation on temperature 7, thermal
conductivity of the filling gas Agr,, and load density p.

In processing theexperimental data we obtained the following equations for calculation of the contribution
of thethermal conductivity of the filling gas to the effective thermal conductivity of the catalysts under investigation

Ag = (0.58 + 0.42T/Ty) (0.637, /A’GT1 +0.37) x
a -4
x (0.680/p, + 0.32) (1.74-10 A + 0.35), W/(m K), (30)

Ay =g [0.55 (T/T,)" ~ 1L.62T/T; + 0.26] x

x (0.76p/p; + 0.24) 8.4-10 >V A_ + 2.715), W/(m-K). 31)

Equations (30) and (31) determine the dependence of the contribution of thethermal conductivity of the filling gas
to the effective thermal conductivity of the catalysts under investigation A; on temperature T, thermal conductivity
of the filling gas Ag, load density p, and thermal conductivity of the metallic particles introduced into the catalysts
Am.

A check of Egs. (29), (30), and (31) for the supports and catalysts under investigation showed that they
approximate the experimental data with an error up to 8%.

With Egs. (29), (30), and (31) one can calculate the contribution of the thermal conductivity of the filling
gas to the effective thermal conductivity of supports and catalysts not studied previously that contain various weight
concentrations of theintroduced metallic particles and have various porosities within the temperature interval
293-1073 K.

From relationship (23), in view of Eqgs. (16), (21), (22), (23), (29)-(31) we obtain the following equations
for calculation of the effective thermal conductivity of loads of catalysts and supports:

for catalysts

A = (0.055 d/d, + 0.945) [1.25p/p, — 0.245) (6.15-10 °A_ +
+526-107%) + (1.55T/T, = 0.5) (0.71p/p, + 0.29) (2.17-107°2_ +

£22.53107) ] + (0.58 + 0.42T/T,) (0.63gy /3Gy, + 0.37) (0.680/p; +
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+0.32) (1.74-10"*, + 0.35), W/(m-K), 32

A = (0.055 d/d, + 0.945) [(p/p, — 0.245) (6.15-10 4, +
+5.26-107%) + (1.55T/T, = 0.5) (0.71p/p, + 0.29) (2.17-10 °A_ +
+22.53-10 7)1 + Ag [0.55 (T/T,)" — 1.62T/T, + 0.26] x

x (0.76p/p, + 0.24) 8.4-10 2V i_ + 2.715), W/(m-K); 33
for supports
Ay = (0.055 d/d, + 0.945) [(0.189 — 14-10 p) +

+ (1.5T/T, — 0.5) (83.9-10 > = 61.3-10 %) + (0.58 + 0.427/T,) x
. -5
x (0.634gy, /Agr, + 0.37) (0.68 — 34-10 "p), W/(mK). (34)

Equations (32)-(34) determine the dependence of the effective thermal conductivity of the load of catalysts

and supports on temperature T, granule dimensions d, load density p, thermal conductivity of the introduced
metallic particles Ap, and thermal conductivity of the filling gas Ag.

A check of Egs. (32)-(34) showed that they describe the effective thermal conductivity of loads of catalysts

and supports with an error up to 8%.

With Egs. (32)-(34) one can calculate the effective thermal conductivity of catalysts and supports not

studied experimentally as a function of temperature, granule dimensions, load density p, and concentration and
type of introduced metallic particles in various gaseous media.
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